

考试形式和试卷结构

408真题构成

一、单项选择题:第 $1\sim40$ 小题,每小题 2 分,共 80 分。下列每题给出的四个选项中,只有一个选项最符合试题要求。

1~11 ——数据结构 (22)

12~22 ——计组(22)

23~32 ——操作系统(20)

33~40 ——计网(16)

二、综合应用题: 第 41~47 小题, 共 70 分。

数据结构(23分)

计组(23分)

操作系统(15分)

计网 (9分)

2009	2010	2011	2012	2013	2014	2015	2016
进程的同步与互斥 (经典同步问题)	磁盘(磁盘调度算法)	进程的同步与互斥 (经典同步问题)	请求分页存储管理 (一级页表的地址 转换原理、缺页处 理、页面置换算 法)	进程的同步与互斥 (经典同步问题)	文件逻辑结构(记录式文件) 录式文件) 文件物理结构(连续、连接分配)	进程的同步与互斥 (经典同步问题)	处理机调度算法
请求分页存储管理 (一级页表引入TLB 的地址转换原理)	理、页面置换算	目录) 文件物理结构(连	文件目录(索引节 点实现) 文件物理结构(连 续分配+索引分配结 合)	基本分页存储管理 (一级页表、二级 页表的地址转换原 理)	进程的同步与互斥 (经典同步问题)		文件目录(FCB实现) 文件逻辑结构(流式 文件) 物理结构(FAT链式分配)
						W E	
2017	2018	2019	2020	2021	2022	2023	202
请求分页存储管理 (结合机器级指令 分析二级页表的地 址转换原理)	请求分页存储管理 (结合图示分析引 入TLB的二级页表的 地址转换原理、页 面置换算法)	进程的同步与互斥 (经典同步问题)	进程的同步与互斥 (经典同步问题)	进程的同步与互斥 (考察信号量机制 的原理)	进程的同步与互斥 (经典同步问题)	进程的同步与互斥 (考察互斥的硬件 实现——Swap指 令)	请求分页存储管理 (一级页表的地址转 换原理、缺页处理)
进程的同步与互斥 (经典同步问题)	文件目录(索引节 点实现) 文件物理结构(索 引分配)	磁盘(磁盘调度算 法)	请求分页存储管理 (结合二维数组分 析二级页表的地址 转换原理)	磁盘(磁盘初始化 、操作系统引导)	文件目录(索引节 点实现) 文件物理结构(索 引分配)	I/O原理(考察I/O过 程)	进程的同步与互斥 (经典同步问题)
2010	2011	2012	2013	2014	2015	016	进程的同步与互反

2009	2010	2011	2012	2013	2014	2015	2016
王道书 2.3 大题17	王道书 5.3 大题 6	王道书 2.3 大题18	王道书 3.2 大题 16	王道书 2.3 大题19//	王道书 4.1 大题 8	王道书 2.3 大题21	王道书 2.2 大题 11
王道书 3.2 大题 14	王道书 3.2 大题 15	王道书 4.1 大题 6	王道书 4.1 大题 7	王道书 3.1 大题 11	王道书 2.3 大题20	王道书 3.2 大题 17	王道书 4.1 大题 9
/sc 6				No.			
2017	2018	2019	2020	2021	2022	2023	2024
王道书 3.2 大题 18	王道书 3.2 大题 19	王道书 2.3 大题23	王道书 2.3 大题24	王道书 2.3 大题25	王道书 2.3 大题26	王道书 2.3 大题27	王道书暂未收录
王道书 2.3 大题22	王道书 4.1 大题 10	王道书 5.3 大题 7	王道书 3.2 大题 20	王道书 5.3 大题 8	王道书 4.1 大题 11	王道书 5.1 大题 3	王道书暂未收录

王道考研/cskaoyan.com

1	
进程的同步与互斥、经典 司步问题	12
基本分页、请求分页存储 管理	9
文件目录、文件逻辑结构 、物理结构	6
磁盘	3
其他	2

分 界 线

操作系统历年真题

45. (7分)某计算机采用虚拟页式存储管理,虚拟地址、物理地址为32位,页表项大小为4B,页面大小为4MB。虚拟地址结构如下:

页号 (10位)

页内偏移量(22位)

进程 P 的页表起始虚拟地址为 B8C0 0000H, 页表被装载到物理地址为 6540 0000H 开始的连续空间。

- (1) 进程 P 访问虚拟地址 1234 5678H 时发生缺页,经缺页异常处理和 MMU 地址转换之后,得到的物理地址 =BAB4 5678H,此次缺页异常处理过程中,需要为所缺页面分配页框,并更新相应的页表项,则该页表项的虚拟地址、物理地址分别是?该页表项的页框号更新后的值是什么?(3分)
- (2) 进程 P 的页表所在页的页号是多少?该页对应的页表项的虚拟地址是多少?该页表项中的页框号是多少?(4分)

46. (8分)一个网络系统,缓冲区 B 可以存放一个数据分组。有 C1、C2、C3 三种操作。

C1: 把一个数据分组写入 B (B 空时才能执行)

C2: 从 B 中读一个分组(B 非空时才能执行)

C3:对B中的数据分组进行修改(B非空时才能执行)

1. 若进程 P1、P2 都要执行 C1, 实现 C1 的代码是否为临界区? 为什么? (2分)

2. 假设 B 初始为空,P1 执行 C1 一次,P2 执行 C2 一次。请定义尽可能少的信号量,用wait(),signal()操作描述 P1、P2 之间的同步互斥关系,说明信号量作用和初值。(3 分)

3. 假设 B 初始非空,P1、P2 各执行 C3 一次,请定义尽可能少的信号量,用 wait(),signal()操作描述 P1、P2 之间的同步互斥关系,说明信号量作用和初值。(3 分)

45. (7分) 现要求学生使用 swap 指令和布尔型变量 lock 实现临界区互斥。lock 为线程间共享的变量,lock 的值为 TRUE 时线程不能进入临界区,为 FALSE 时线程能够进入临界区。某同学编写的实现临界区互斥的伪代码如题 45(a) 图所示。

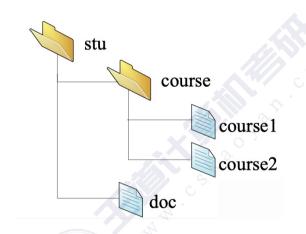
```
某同学编写的伪代码

bool lock = FALSE; // 共享变量
......
| bool key = TRUE; | 进入区
| if (key == TRUE) |
| swap key, lock; // 交换 key 和 lock 的值
| 临界区; |
| lock = TRUE; | 退出区
......
```

```
newSwap()的代码

void newSwap( bool *a, bool *b )
{
    bool temp = *a;
    *a = *b;
    *b = temp;
}
```

题 45(a)图

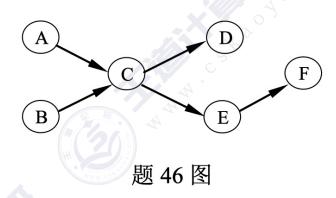

题 45(b)图

请回答下列问题。

- 1)题 45(a)图的伪代码中哪些语句存在错误?将其改为正确的语句(不增加语句的条数)。
- 2)题 45(b)图给出了交换两个变量值的函数 newSwap()的代码,是否可以用函数调用语句 "newSwap(&key, &lock)"代替指令"swap key, lock"以实现临界区互斥?为什么?

- 46. (8分)进程 P 通过执行系统调用从键盘接收一个字符的输入,已知此过程中与进程 P 相关的操作包括:①将进程 P 插入就绪队列;②将进程 P 插入阻塞队列;③将字符从键盘控制器读入系统缓冲区;④启动键盘中断处理程序;⑤进程 P 从系统调用返回;⑥用户在键盘上输入字符。以上编号①~⑥仅用于标记操作,与操作的先后顺序无关。请回答下列问题。
 - 1)按照正确的操作顺序,操作①的前一个和后一个操作分别是上述操作中的哪一个?操作⑥的后一个操作是上述操作中的哪一个?
 - 2) 在上述哪个操作之后 CPU 一定从进程 P 切换到其他进程? 在上述哪个操作之后 CPU 调度程序才能选中进程 P 执行?
 - 3) 完成上述哪个操作的代码属于键盘驱动程序?
 - 4) 键盘中断处理程序执行时, 进程 P 处于什么状态? CPU 处于内核态还是用户态?

45. (7分) 某文件系统的磁盘块大小为 4 KB, 目录项由文件名和索引节点号构成,每个索引节点占 256 字节,其中包含直接地址项 10个,一级、二级和三级间接地址项各 1个,每个地址项占 4 字节。该文件系统中子目录 stu 的结构如题 45(a)图


所示, stu 包含子目录 course 和文件 doc, course 子目录包含文件 course1 和 course2。各文件的文件名、索引节点号、占用磁盘块的块号如题 45(b)图所示。

- 请回答下列问题。
- 1) 目录文件 stu 中每个目录项的内容是什么?
- 2) 文件 doc 占用的磁盘块的块号 x 的值是多少?
- 3) 若目录文件 course 的内容已在内存,则打开文件 course1 并将其读入内存,需要读几个磁盘块?说明理由。
- 4) 若文件 course2 的大小增长到 6 MB,则为了存取 course2 需要使用该文件索引节点的哪几级间接地址项? 说明理由。

文件名	索引节点号	磁盘块号
stu	1	10
course	2	20
course1	10	30
course2	100	40
doc	10	x

题 45(b)图

46. (8分) 某进程的两个线程 T1 和 T2 并发执行 A、B、C、D、E 和 F 共 6 个操作,其中 T1 执行 A、E 和 F,T2 执行 B、C 和 D。 题 46 图表示上述 6 个操作的执行顺序所必须满足的约束: C 在 A 和 B 完成后执行,D 和 E 在 C 完成后执行,F 在 E 完成后执行。请使用信号量的 wait()、signal()操作描述 T1 和 T2 之间的同步关系,并说明所用信号量的作用及其初值。

45. (7分)下表给出了整型信号量 S 的 wait () 和 signal () 操作的功能描述,以及采用开/ 关中断指令实现信号量操作互斥的两种方法。

功能描述	方法1	方法 2
Semaphore S;	Semaphore S;	Semaphore S;
wait(S){	wait(S){	wait(S){
while(S<=0);	关中断;	关中断;
S=S-1;	while(S<=0);	while(S<=0);
}	S=S-1;	开中断;
	开中断;	关中断;
	}	}
	Pww.C5	S=S-1;
		开中断;
	0.47	1
signal(S){	signal(S){	signal(S){
S=S+1;	关中断;	关中断;
1	S=S+1;	S=S+1;
	开中断;	开中断;
	}	}

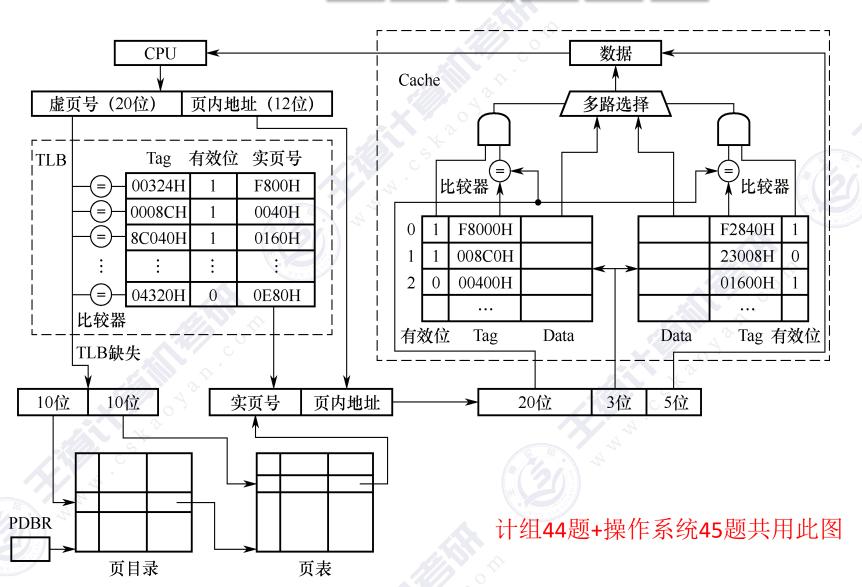
请回答下列问题。

- 1) 为什么在 wait () 和 signal () 操作中对信号量 S 的访问必须互斥执行?
- 2) 分别说明方法1和方法2是否正确。若不正确,请说明理由。
- 3) 用户程序能否使用开/关中断指令实现临界区互斥? 为什么?

- 46. (8分)某计算机用硬盘作为启动盘,硬盘第一个扇区存放主引导记录,其中包含磁盘引导程序和分区表。磁盘引导程序用于选择要引导哪个分区的操作系统,分区表记录硬盘上各分区的位置等描述信息。硬盘被划分成若干个分区,每个分区的第一个扇区存放分区引导程序,用于引导该分区中的操作系统。系统采用多阶段引导方式,除了执行磁盘引导程序和分区引导程序外,还需要执行 ROM 中的引导程序。请回答下列问题。
 - 1) 系统启动过程中操作系统的初始化程序、分区引导程序、ROM 中的引导程序、磁盘引导程序的执行顺序是什么?
 - 2) 把硬盘制作为启动盘时,需要完成操作系统的安装、磁盘的物理格式化、逻辑格式化、 对磁盘进行分区,执行这4个操作的正确顺序是什么?
 - 3) 磁盘扇区的划分和文件系统根目录的建立分别是在第2) 问的哪个操作中完成的?

45. (7分) 现有 5 个操作 A、B、C、D 和 E,操作 C 必须在 A 和 B 完成后执行,操作 E 必须在 C 和 D 完成后执行,请使用信号量的 wait()、signal()操作(P、V 操作)描述上述操作 之间的同步关系,并说明所用信号量及其初值。←

46. (8 分) 某 32 位系统采用基于二级页表的请求分页存储管理方式,按字节编址,页目录项和页表项长度均为 4 字节,虚拟地址结构如下所示。↩


页目录号(10位)← 页号	(10 位) ← 页内偏移量 (12 位) ←
---------------	-------------------------

某 C 程序中数组 a[1024][1024]的起始虚拟地址为 1080 0000H,数组元素占 4 字节,该程序运行时,其进程的页目录起始物理地址为 0020 1000H,请回答下列问题。

- (1)数组元素 a[1][2]的虚拟地址是什么?对应的页目录号和页号分别是什么?对应的页目录项的物理地址是什么?若该目录项中存放的页框号为00301H,则 a[1][2]所在页对应的页表项的物理地址是什么? ←
- (2) 数组 a 在虚拟地址空间中所占区域是否必须连续? 在物理地址空间中所占区域是否必须连续? ←
- (3)已知数组 a 按行优先方式存放,若对数组 a 分别按行遍历和按列遍历,则哪一种遍历方式的局部性更好? ←

- 43. (8分)有n(n>3)位哲学家围坐在一张圆桌边,每位哲学家交替地就餐和思考。在圆桌中心有m(m>1)个碗,每两位哲学家之间有一根筷子。每位哲学家必须取到一个碗和两侧的筷子后,才能就餐,进餐完毕,将碗和筷子放回原位,并继续思考。为使尽可能多的哲学家同时就餐,且防止出现死锁现象,请使用信号量的P、V操作[wait()、signal()操作]描述上述过程中的互斥与同步,并说明所用信号量及初值的含义。
- 44. (7分) 某计算机系统中的磁盘有 300 个柱面,每个柱面有 10 个磁道,每个磁道有 200 个扇区,扇区大小为 512B。文件系统的每个簇包含 2 个扇区。请回答下列问题: ←
 - (1) 磁盘的容量是多少? ←
- (2) 假设磁头在 85 号柱面上,此时有 4 个磁盘访问请求,簇号分别为 100 260、60 005、101 660 和 110 560。若采用最短寻道时间优先(SSTF)调度算法,则系统访问簇的先后次序是什么? 4

- 45. (8分)请根据题 44 图给出的虚拟存储管理方式,回答下列问题。←
- (1) 某虚拟地址对应的页目录号为 6, 在相应的页表中对应的页号为 6, 页内偏移量为 8, 该虚拟地址的十六进制表示是什么? 4
- (2) 寄存器 PDBR 用于保存当前进程的页目录起始地址,该地址是物理地址还是虚拟地址? 进程切换时,PDBR 的内容是否会变化? 说明理由。同一进程的线程切换时,PDBR 的内容是否会变化? 说明理由。4
 - (3) 为了支持改进型 CLOCK 置换算法,需要在页表项中设置哪些字段? ←

- 46. (7分)某文件系统采用索引结点存放文件的属性和地址信息,簇大小为 4KB。每个文件索引结点占 64B,有 11 个地址项,其中直接地址项 8 个,一级、二级和三级间接地址项 8 个,每个地址项长度为 4B。请回答下列问题。←
 - (1) 该文件系统能支持的最大文件长度是多少? (给出计算表达式即可。) ~
- (2) 文件系统用 1M (1M = 2²⁰) 个簇存放文件索引结点,用 512M 个簇存放文件数据。若一个图像文件的大小为 5600B,则该文件系统最多能存放多少个图像文件? ←
- (3) 若文件 F1 的大小为 6KB, 文件 F2 的大小为 40KB, 则该文件系统获取 F1 和 F2 最后一个簇的簇号需要的时间是否相同?为什么?←

45. (7分) 假定题 44 给出的计算机 M 采用二级分页虚拟存储管理方式,虚拟地址格 式如下: <

int f1 (unsigned n) 页目录号(10位)← 页表索引(10位)← 页内偏移量(12位) push ebp 00401020 请针对题 43 的函数 f1 和题 44 中的机器指令代码,回答下列问题。← (1) 函数 f1 的机器指令代码占多少页? ← for (unsigned i = 0; i < n - 1; i + +) (2) 取第 1 条指令(push ebp)时,若在进行地址变换的过程中需要访问内存中的页目录 和页表,则会分别访问它们各自的第几个表项(编号从0开始)? cmp dword ptr [ebp-0Ch], ecx 20 0040105E 39 4D F4 (3) M的 I/O 采用中断控制方式。若进程 P 在调用 fl 之前通过 scanf()获取 n 的值,则在执 行 scanf()的过程中,进程 P 的状态会如何变化? CPU 是否会进入内核态? ← power * = 2;

23

35

00401066

0040107F

return sum;

D1 E2

C3

44 题给出的机器指令代码 ♥

shl edx, 1

ret

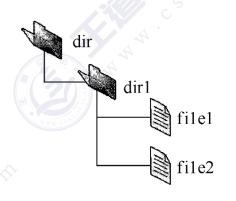
```
int f1 (unsigned n) {
   int sum=1, power=1;
   for (unsigned i=0;i<=n-1;i++) {←
      power *= 2;←
      sum += power;
   *
   return sum;
```

43 题给出的C语言代码 ♥

王道考研/CSKAOYAN.COM

46. (8分)某进程中有3个并发执行的线程 thread1、thread2 和 thread3,其伪代码如下

所示。↩


```
//复数的结构类型定义
                              thread1
                                                 thread3
typedef struct
                                cnum w;
                                                   cnum w;
  float a;
                                w = add(x, y);
                                                   w.a = 1;
  float b;
                                                   w.b = 1;
 cnum;
                                                   z = add(z, w);
cnum x, y, z; // 全局变量
                                                   y = add(y, w);
                              thread2
//计算两个复数之和
cnum add( cnum p, cnum q)
                                cnum w;
                                w = add(y, z);
  cnum s;
  s.a = p.a + q.a;
  s.b = p.b + q.b;
  return s;
```

请添加必要的信号量和 P、V (或 wait()、signal()) 操作,要求确保线程互斥访问临界资源,

并且最大限度地并发执行。 4

- 46. 某进程调度程序采用基于优先数 (priority) 的调度策略,即选择优先数最小的进程运行,进程创建时由用户指定一个 nice 作为静态优先数。为了动态调整优先数,引入运行时间 cpuTime 和等待时间 waitTime,初值均为 0。进程处于执行态时,cpuTime 定时加 1,且 waitTime 置 0;进程处于就绪态时,cpuTime 置 0,waitTime 定时加 1。请回答下列问题。←
- (1) 若调度程序只将 nice 的值作为进程的优先数,即 priority = nice,则可能会出现饥饿现象,为什么?←
- (2) 使用 nice、cpuTime 和 waitTime 设计一种动态优先数计算方法,以避免产生饥饿现象,并说明 waitTime 的作用。←

- 47. 某磁盘文件系统使用链接分配方式组织文件,簇大小为 4KB。目录文件的每个目录项包括文件名和文件的第一个簇号,其他簇号存放在文件分配表 FAT 中。←
- (1) 假定目录树如下图所示,各文件占用的簇号及顺序如下表所示,其中 dir、dir1 是目录, file1、file2 是用户文件。请给出所有目录文件的内容。←

•	
文件名	簇号
dir	1
dir1	48
file1	100、106、108
file2	200、201、202

- (2) 若 FAT 的每个表项仅存放簇号,占 2 字节,则 FAT 的最大长度为多少字节?该文件系统支持的文件长度最大是多少? ←
- (3) 系统通过目录文件和 FAT 实现对文件的按名存取,说明 file1 的 106、108 两个簇号分别存放在 FAT 的哪个表项中。←
- (4) 假设仅 FAT 和 dir 目录文件已读入内存, 若需将文件 dir/dir1/file1 的第 5000 个字节读入内存,则要访问哪几个簇? └

45. (9分)有 A、B 两人通过信箱进行辩论,每个人都从自己的信箱中取得对方的问题。将答案和向对方提出的新问题组成一个邮件放入对方的邮箱中。假设 A 的信箱最多放 M 个邮件,B 的信箱最多放 N 个邮件。初始时 A 的信箱中有 x 个邮件(0 < x < M),B 的信箱中有 y 个(0 < y < N)。辩论者每取出一个邮件,邮件数减 1。A 和 B 两人的操作过程描述如下: \leftarrow

```
      CoBegin←
      B{←

      while (TRUE) { ←
      while (TRUE) { ←

      从 A 的信箱中取出一个邮件; ←
      从 B 的信箱中取出一个邮件; ←

      回答问题并提出一个新问题; ←
      四答问题并提出一个新问题; ←

      将新邮件放入 B 的信箱; ←
      将新邮件放入 A 的信箱; ←
```

CoEnd

当信箱不为空时,辩论者才能从信箱中取邮件,否则需要等待。当信箱不满时,辩论者才能将新邮件放入信箱,否则需要等待。请添加必要的信号量和 P、V(或 wait、signal)操作,以实现上述过程的同步。要求写出完整过程,并说明信号量的含义和初值。←

46. (6分) 某计算机系统按字节编址,采用二级页表的分页存储管理方式,虚拟地址格式如下所示: ←

10 位	10位	12 位←
页目录号↩	页表索引↩	页内偏移量↩

请回答下列问题。↩

- 1)页和页框的大小各为多少字节?进程的虚拟地址空间大小为多少页? 4
- 2) 假定页目录项和页表项均占 4 字节,则进程的页目录和页表共占多少页?要求写出计算过程。←
- 3) 若某指令周期内访问的虚拟地址为 0100 0000H 和 0111 2048H,则进行地址转换时共访问多少个二级页表?要求说明理由。←

- 46. 文件 F 由 200 条记录组成,记录从 1 开始编号。用户打开文件后,欲将内存中的一条记录插入到文件 F 中,作为其第 30 条记录。请回答下列问题,并说明理由。←
- 1) 若文件系统采用连续分配方式,每个磁盘块存放一条记录,文件 F 存储区域前后均有足够的空闲磁盘空间,则完成上述插入操作最少需要访问多少次磁盘块? F 的文件控制块内容会发生哪些改变?
- 2) 若文件系统采用链接分配方式,每个磁盘块存放一条记录和一个链接指针,则完成上述插入操作需要访问多少次磁盘块? 若每个存储块大小为 1KB, 其中 4 字节存放链接指针,则该文件系统支持的文件最大长度是多少? 🖰
- 47. 系统中有多个生产者进程和多个消费者进程,共享一个能存放 1000 件产品的环形缓冲区(初始为空)。当缓冲区未满时,生产者进程可以放入其生产的一件产品,否则等待;当缓冲区未空时,消费者进程可以从缓冲区取走一件产品,否则等待。要求一个消费者进程从缓冲区连续取出 10 件产品后,其他消费者进程才可以取产品。请使用信号量 P,V(或 wait(), signal())操作实现进程间的互斥与同步,要求写出完整的过程,并说明所用信号量的含义和初值。

45. (7分) 某博物馆最多可容纳 500 人同时参观,有一个出入口,该出入口一次仅允许一个人通过。参观者的活动描述如下: ←

```
cobegin <-
   参观者进程 i: ←
   { ←
        •••
   进门; <
   参观;
   出门;
   coend<
```

请添加必要的信号量和 P、V (或 wait()、signal())操作,以实现上述过程中的互斥与同步。 要求写出完整的过程,说明信号量的含义并赋初值。←

- 46. (8分) 某计算机主存按字节编址,逻辑地址和物理地址都是 32 位,页表项大小为 4字节。请回答下列问题。←
 - (1) 若使用一级页表的分页存储管理方式,逻辑地址结构如下: ←

页号(20位) ← 页内偏移量(12位)←

则页的大小是多少字节?页表最大占用多少字节? ~

(2) 若使用二级页表的分页存储管理方式,逻辑地址结构如下: ←

设逻辑地址为 LA, 请分别给出其对应的页目录号和页表索引的表达式。

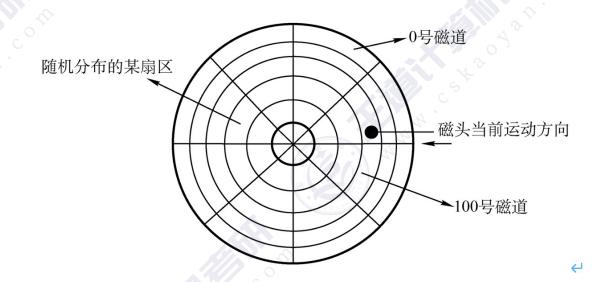
(3) 采用(1) 中的分页存储管理方式,一个代码段起始逻辑地址为0000 8000H,其长度为8KB,被装载到从物理地址0090 0000H 开始的连续主存空间中。页表从主存0020 0000H 开始的物理地址处连续存放,如下图所示(地址大小自下向上递增)。请计算出该代码段对应的两个页表项的物理地址、这两个页表项中的页框号以及代码页面2的起始物理地址。←

45. 某请求分页系统的局部页面置换策略如下:系统从 0 时刻开始扫描,每隔 5 个时间单位扫描一轮驻留集(扫描时间忽略不计),本轮没有被访问过的页框将被系统回收,并放入到空闲页框链尾,其中内容在下一次分配之前不被清空。当发生缺页时,如果该页曾被使用过且还在空闲页链表中,那么重新放回进程的驻留集中,否则,从空闲页框链表头部取出一个页框。

假设不考虑其他进程的影响和系统开销。初始时进程驻留集为空。目前系统空闲页框链表中页框号依次为 32、15、21、41。进程 P 依次访问的<虚拟页号,访问时刻>是<1, 1>, <3, 2>, <0, 4>, <0, 6>, <1, 11>, <0, 13>, <2, 14>。请回答下列问题。

- 1) 访问<0,4>时,对应的页框号是什么?说明理由。
- 2) 访问<1,11>时,对应的页框号是什么?说明理由。
- 3) 访问<2,14>时,对应的页框号是什么?说明理由。←
- 4) 该策略是否适合于时间局部性好的程序? 说明理由。

- 46. 某文件系统空间的最大容量为 $4TB(1TB = 2^{40}B)$,以磁盘块为基本分配单位。磁盘块大小为 1KB。文件控制块(FCB)包含一个 512B 的索引表区。请回答下列问题。
- 1)假设索引表区仅采用直接索引结构,索引表区存放文件占用的磁盘块号,索引表项中块号最少占多少字节?可支持的单个文件最大长度是多少字节?
- 2) 假设索引表区采用如下结构: 第 0~7 字节采用<起始块号, 块数>格式表示文件创建时预分配的连续存储空间, 其中起始块号占 6B, 块数占 2B; 剩余 504 字节采用直接索引结构, 一个索引项占 6B, 那么可支持的单个文件最大长度是多少字节? 为了使单个文件的长度达到最大,请指出起始块号和块数分别所占字节数的合理值并说明理由。←

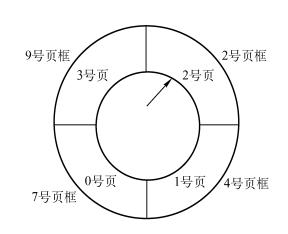

45. (8分)某银行提供1个服务窗口和10个供顾客等待的座位。顾客到达银行时,若有空座位,则到取号机上领取一个号,等待叫号。取号机每次仅允许一位顾客使用。当营业员空闲时,通过叫号选取一位顾客,并为其服务。顾客和营业员的活动过程描述如下: 4

```
cobegin <-
{←
  process 顾客 i
   {←
     从取号机获取一个号码; ←
     等待叫号;
     获取服务;
   } 
  process 营业员
     while (TRUE) 🖰
        叫号; ←
        为客户服务; <
}coend
```

请添加必要的信号量和 P、V(或 wait()、signal())操作,实现上述过程中的互斥与同步。要求写出完整的过程,说明信号量的含义并赋初值。←

- 46. (7分) 某文件系统为一级目录结构,文件的数据一次性写入磁盘,已写入的文件不可修改,但可多次创建新文件。请回答如下问题。←
- (1) 在连续、链式、索引三种文件的数据块组织方式中,哪种更合适?要求说明理由。为定位文件数据块,需要 FCB 中设计哪些相关描述字段?←
- (2) 为快速找到文件,对于 FCB,是集中存储好,还是与对应的文件数据块连续存储好?要求说明理由。←

- 45. (7分) 假设计算机系统采用 CSCAN (循环扫描) 磁盘调度策略,使用 2KB 的内存空间记录 16384 个磁盘块的空闲状态。
 - 1)请说明在上述条件下如何进行磁盘块空闲状态的管理。
- 2)设某单面磁盘旋转速度为 6000rpm,每个磁道有 100 个扇区,相邻磁道间的平均移动时间为 1ms。若在某时刻,磁头位于 100 号磁道处,并沿着磁道号增大的方向移动(见下图),磁道号请求队列为 50,90,30,120,对请求队列中的每个磁道需读取 1 个随机分布的扇区,则读完这 4 个扇区点共需要多少时间?要求给出计算过程。
- 3)如果将磁盘替换为随机访问的 Flash 半导体存储器(如 U 盘、SSD等),是否有比 CSCAN 更高效的磁盘调度策略?若有,给出磁盘调度策略的名称并说明理由;若无,说明理由。



46. (8分)设某计算机的逻辑地址空间和物理地址空间均为 64KB,按字节编址。若某进程最多需要 6页 (Page)数据存储空间,页的大小为 1KB,操作系统采用固定分配局部置换策略为此进程分配 4个页框 (Page Frame)。在时刻 260 前的该进程访问情况见下表 (访问位即使用位)。↩

页号↩	页框号↩	装入时刻↩	访问位↩
0←	7←	130€	1€ €
1←	44 15	230←	1← ←
2←	24	200←	1€ ←
3←	941	260€	14

当该进程执行到时刻 260 时,要访问逻辑地址为 17CAH 的数据。请回答下列问题: 4

- 1) 该逻辑地址对应的页号是多少? ←
- 2) 若采用先进先出(FIFO)置换算法,该逻辑地址对应的物理地址是多少?要求给出计算过程。←
- 3) 若采用时钟(CLOCK)置换算法,该逻辑地址对应的物理地址是多少?要求给出计算过程(设搜索下一页的指针沿顺时针方向移动,且当前指向2号页框,示意图见下图)。

45. (7分) 三个进程 P_1 、 P_2 、 P_3 互斥使用一个包含 N (N>0) 个单元的缓冲区。 P_1 每次用 produce()生成一个正整数并用 put()送入缓冲区某一空单元中; P_2 每次用 getodd()从该缓冲区中取出一个奇数并用 countodd()统计奇数个数; P_3 每次用 geteven()从该缓冲区中取出一个偶数并用 counteven()统计偶数个数。请用信号量机制实现这三个进程的同步与互斥活动,并说明所定义信号量的含义(要求用伪代码描述)。

46. (8分)请求分页管理系统中,假设某进程的页表内容见下表。

T			A W		
	页号←	页相	框(Page Frame)号<	有效位(存在位)	
	0←		101H←	1←1	٥
	1←		←7	0←	٥
	2←	(S. 15)	254H←	14	
				Horner CS	

页面大小为 4KB,一次内存的访问时间为 100ns,一次快表(TLB)的访问时间为 10ns,处理一次缺页的平均时间为 10⁸ns(已含更新 TLB 和页表的时间),进程的驻留集大小固定为 2,采用最近最少使用置换算法(LRU)和局部淘汰策略。假设①TLB 初始为空;②地址转换时先访问 TLB,若 TLB 未命中,再访问页表(忽略访问页表之后的 TLB 更新时间);③有效位为 0表示页面不在内存中,产生缺页中断,缺页中断处理后,返回到产生缺页中断的指令处重新执行。设有虚地址访问序列 2362H、1565H、25A5H,请问:

- 1) 依次访问上述三个虚地址,各需多少时间?给出计算过程。
- 2) 基于上述访问序列,虚地址 1565H 的物理地址是多少?请说明理由。